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Abstract. The possible variability of project delay is useful information
to understand and mitigate the project delay risk. However, it is not suf-
ficiently considered in the literature concerning effort estimation and
simulation in software product line development. In this paper, we pro-
pose a project delay simulation model by introducing a random variable
to represent the variability of adaptive rework. The model has been val-
idated through stochastic simulations by comparing generated adaptive
rework to an actual change effort distribution, and by sensitivity anal-
ysis. The result shows that the proposed model is capable of producing
reasonable variability of adaptive rework, and consequently, variability
of project delay. Analysis of our model indicates that the strength of
dependency has a larger impact than the number of residual defects, for
the studied simulation settings. However, high levels of adaptive rework
variability did not have great impact on overall project delay.

Key words: process simulation, software product line development,
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1 Introduction

Software Product Line (SPL) development can shorten the total cycle time,
the duration from the beginning of core asset development to the end of prod-
uct development, by achieving large-scale reuse [1]. However, effort estimation,
planning, and development management for SPL are more complex and difficult
than those for sequential development, because of inter-connected relationships
between core assets and products, concurrency of their projects, and multiple
deadline management [2]. In addition, there are still general problems with soft-
ware effort estimation errors such as unplanned work [3] as well as requirements
volatility [4]. The total cycle time can sometimes be longer than initially planned
because of these problems.

One source of unplanned work is poor quality of software artifacts. A certain
number of defects will inevitably remain in released core assets, as software test-
ing can not demonstrate the absence of defects [5]. When residual defects in core
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assets are detected after their release to product projects (not to customers),
corrective maintenance4 is usually performed5 to modify the core assets. When
multiple product projects are undertaken simultaneously during core asset main-
tenance phase, corrective maintenance in core assets sometimes brings associated
rework to all ongoing product projects that depend on the core assets, to adapt
the products to the changed core assets. We call this type of rework “adaptive
rework”.6

With regard to this problem, we previously proposed a simulation model for
estimating project delay in concurrent software development and conducted a
deterministic simulation with fictional project data [7], which did not estimate
the variability of project delay. The variability, or the level of risk of project
delay is useful information [8] when a project manager wants to understand and
mitigate project delay risk. Even in the literature concerning effort estimation
and simulation, the level of risk of project delay in SPL development has not been
considered enough [9—12]. In consideration of the variability of project delay, we
set the following research questions in this paper. How much variability of project
delay in SPL development is expected when (a) the number of residual defects in
core assets changes and (b) the strength of dependency changes?

To explore these research questions, we propose a simulation model for es-
timating project delay and its variability by introducing a random variable to
represent the duration of adaptive rework. Furthermore, we increase the ex-
pressiveness of the model by introducing inter-dependency of core assets. We
conducted stochastic simulations with fictional project data with the proposed
model.

The reminder of this paper is organized as follows. Sect. 2 describes the
proposed simulation model which includes the previous model and the enhanced
features. Simulation results and derived implications are described in Sect. 3.
Sect. 4 discusses model evaluation. Sect. 5 contains a discussion and describes
related work. Concluding remarks are described in Sect. 6.

2 Proposed Simulation Model

Software process analysis approaches can be categorized into the following three
types [13]: analytical models such as COCOMO II [9], continuous simulation
models [14, 15], and discrete-event simulation models [16—18]. A discrete-event
simulation model is suitable for detailed analyses of process and project per-
formance [19]. As we consider sequential events concerning residual defects and

4 Corrective maintenance is defined in an IEEE standard [6] as “reactive modification
of a software product performed after delivery to correct discovered faults.”

5 In actual practice, not all discovered defects will always be fixed.
6 The meaning of ‘adaptive rework’ in this paper and that of ‘adaptive maintenance’ in
an IEEE standard [6] are somewhat different. Adaptive maintenance is defined in [6]
as “modification of a software product performed after delivery to keep a computer
program usable in a changed or changing environment.”
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adaptive rework, we apply a discrete-event simulation model to the proposed
model.

2.1 Primary Factors of the Simulation Model

Suppose that there is a limitation on available resources. To avoid or reduce
project delay, the frequency of adaptive rework as well as its duration should be
reduced. The frequency is closely correlated with the number of residual defects
in core assets. The duration of each piece of adaptive rework will in practice
relate to the strength of dependency between core assets and products. This
assumption is partly supported by [20—22] showing that design complexity has
a large influence on maintenance effort. The duration will also relate to what
development phase it occurs in. Literature reports that the ratio of the cost of
finding and fixing a defect during design, test, and field use is 1 to 13 to 92 [23]
or 1 to 20 to 82 [24].

From this discussion, we select the following three factors as primary factors
of the simulation model.

1. The number of residual defects in core assets (NRD). NRD will depend on
product size, product complexity, process quality, and other factors. We as-
sume that NRD can be estimated.

2. The strength of the dependency (DEP). We consider DEP between core as-
sets and products as well as among core assets. DEP is represented as a
continuous variable that ranges from 0 to 1. DEP = 0 means no dependency,
and DEP = 1 means the strongest. In practice, there may be different levels
of dependency for different changes, but as discussed below, we use a single
DEP value to represent the worst-case dependency.

3. Work effort multiplier (WEM). We introduce WEM to represent the ratio
of the duration of pieces of adaptive rework for each development phase in
which adaptive rework occurs. We assume that each product project fol-
lows sequential processes. WEM is represented as a continuous variable that
ranges from 0 to 1.

2.2 Determining Adaptive Rework

To determine the duration of each piece of adaptive rework, we first consider
defect correction completion time in the core asset maintenance phase that de-
termines the time when adaptive rework occurs. The defect correction comple-
tion time can be determined by applying a Software Reliability Growth Model
(SRGM) [25]. Suppose that all residual defects in core assets are detected during
core asset maintenance phase. If we draw an SRGM curve during the phase, the
defect correction completion time of these defects can be determined by assigning
a time to each defect along with the curve depending on reliability growth.

Next, we introduce a parameter “worst case adaptive rework” (WCAR).
WCAR is supposed to represent the duration of adaptive rework in the fol-
lowing worst-case scenario: (1) the defect correction completion time is at the
end of the product project, and (2) DEP is the strongest.
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Fig. 1. An actual error correction effort histogram and a distribution for WCAR.

WCAR inherently has a certain distribution, because the duration of WCAR
depends on what kind of defects corrected in core assets. Here we introduce a
continuous random variable to represent the WCAR distribution. According to
the Software Engineering Laboratory (SEL) data subset [26], an effort distri-
bution for error correction has a right-skewed distribution as depicted in Fig. 1
(a). To generate a WCAR distribution like Fig. 1 (a), we use the right-hand
half part of a normal distribution (Fig. 1 (b), μ = 0 and σ = 3, for example).
Note that the range of the WCAR distribution is larger than that of the SEL
data distribution, as the WCAR distribution represents worst cases of adaptive
rework instead of actual change effort.

With these parameters, the duration of each piece of adaptive rework can
be determined as follows. The duration of adaptive rework ∆ri(dj) (in months)
caused by the defect dj in the product project i is assumed to be represented by
the formula

∆ri(dj) = EffDist
−1
wcari(p)×WEMj(tdj )×DEPki × ², (1)

where EffDist−1wcari(p) (in months) is the inverse function of the WCAR effort
distribution probability function for the project i. Probability p is given at ran-
dom. WEM for the project i is represented with WEMj(tdj ) when the defect dj
correction is completed in core asset maintenance phase at the time tdj . DEP
between the core assets k and the product i (or core assets i) is represented with
DEPki. The parameter ² is 1 if tdj is within the period of the product project i.
Otherwise, ² is 0.

2.3 Model Assumptions

The simulation model relies on the following assumptions:

1. Adaptive rework occurs at the time when the causal defect is corrected.
Actually, this assumption is not true in practice. Defect correction delay
has been observed in [27], which reported that 55% of defects were corrected
within a few days, 36% within the next week, and the last 9% before customer
release or in the next version.
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Fig. 2. Time schedule of the fictional SPL development project.

2. The amount of adaptive rework decreases from WCAR, depending on DEP
and WEM, which is partly supported by [20—24].

3. Adaptive rework for completed projects is not performed even though later
defect corrections in dependent core assets may be performed.

4. Products are sequentially developed in planned order by an assigned team
with a limited number of resources.

5. The impact of imperfect defect correction during corrective maintenance in
core assets and adaptive rework is negligible, which is in practice supported
by [27]. That is, it makes little difference on project delay if we do not
consider defect correction effort arisen from the another defects that will be
injected during those activities.

3 Simulation Results

3.1 Project Data and Parameters

A fictional SPL development project has been studied for simulation. The time
schedule of the project is shown in Fig. 2. Arrows in Fig. 2 represent dependency.
In this project, 10 products are scheduled to be developed by two product teams
concurrently. Core assets are developed, maintained, and enhanced by a core
team that is independent of the product teams. Core-2 is an enhanced version of
Core-1. Prod-1 to Prod-5 depend on Core-1, while Prod-6 to Prod-10 depend on
Core-2. Core-1 maintenance phase is scheduled to be finished at the same time
when Prod-5 finishes. The scheduled total cycle time is 15 months. Each pair
of successive product projects is scheduled without any buffers. The duration
of core asset maintenance phase will be expanded in response to the delayed
product projects.

Note that the absolute sizes of core assets and products are not considered
here, because they do not directly affect simulation results in the proposed model.
Nonetheless, size does affect NRD as described in Sect. 2.1, and DEP might be
partly dependent on size.

Several patterns for NRD and DEP have been studied to explore the research
questions. For the other parameters, a fixed value or a fixed model is applied.
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Fig. 3. A simulation result: detail view of project delay.

1. NRD: Four patterns of NRD have been studied ranging from 10 to 40 defects
in increments of 10 defects. These values are the sum of NRD in both Core-1
and Core-2.

2. DEP: We have studied three DEP levels of 0.2, 0.6 and 1.0.
3. WEM: By considering the empirical data concerning the cost of defect cor-
rection during design and test [23, 24], a factor of 20 has been studied. To
make the model simple, we use a linear model ranging from 0.05 to 1.0.

4. Defect correction completion time: Though numerous SRGMs have been pro-
posed in the literature [25], we apply the following simple logarithmic func-
tion

y = 1 + loga x, (2)

where y represents cumulative rate of defect detection, while x represents
normalized duration of core asset maintenance phase (0 < x ≤ 1). In this
simulation a = 20 is used, which means that 60% of residual defects are
corrected before 30% of maintenance phase, and 90% of defects are corrected
before 75% of the phase, for example.

5. WCAR: We use the distribution pattern in Fig. 1 (b). Note that WCAR is
limited up to 8 days in the simulations in order not to generate unrealistically
large amount of rework, though a normal distribution has unlimited values.

3.2 Result 1: Detail View of Project Delay and Adaptive Rework

Figure 3 shows a simulation result representing how project delay occurs caused
by residual defects in detail (DEP = 0.6, NRD = 20). The dots represent residual
defects and their correction completion time. One can see that Core-2 develop-
ment project is delayed for 0.02 months due to two residual defects detected in
Core-1 maintenance phase. The estimated total cycle time is 15.39 months (i.e.
a total delay of 0.39 months).

Figure 4 shows the histograms of generated adaptive rework with four com-
binations of NRD and DEP. Note that each boxplot has a different scale in both
x-axis and y-axis. The shapes of the histograms are all skewed to the right, as
the WCAR distribution is also right-skewed. The ranges of Fig. 4 (c, d) are quite
smaller than those of Fig. 4 (a, b). The ranges of Fig. 4 (a, b) are still smaller
than those of the WCAR distribution in Fig. 1 (b), as the WCAR distribution
is assumed to have the largest WEM. In Fig. 4 (c, d), all pieces of adaptive
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Fig. 4. Examples of generated adaptive rework histograms.

Fig. 5. Simulation results on estimated total cycle time (Note: y-scales are different).

rework are completed within one day and most of them are less than 0.2 day
(two or three hours) because of weak DEP. The distributions with weak DEP
are considered to be a better approximation of actual change effort distribution
shown in Fig. 1 (a).

3.3 Result 2: Variability of Project Delay

We conducted 100-run simulations for each combination of NRD and DEP. The
boxplots in Fig. 5 (a, b, c) represent the simulation results. The mean and the
standard deviation of each combination are shown in the table below the boxplot.
Note that each y-axis has a different scale among boxplots.
The results imply that project delay and its variation can be held down

if DEP and NRD are low (DEP = 0.2 and NRD = 10). Even for the worst
combination in the studied settings (DEP = 1.0 and NRD = 40), the standard
deviation of estimated project delay was not very large (0.20). In this case, the
range for all data including suspected outliers was from 16.12 to 17.31. As the
initial planned time was 15 months, the estimation error rate ranges from 1.07 to
1.15. It means that 8 percentage points of schedule estimation error has appeared
in this case at most. It is considered to be in practice quite a small difference
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for effort or schedule estimation error. When we consider the impact of DEP
on durations of pieces of adaptive rework, it sometimes bring larger durations
(over one or two days) of adaptive rework as shown in Fig. 4 (a, b). However,
the overall effect on project delay is trivial according to the simulation result.
The following is a detailed analysis of the simulation results.

1. Magnitude of variability: The standard deviations for DEP = 0.2 are quite
small (from 0.02 to 0.04), and even those for DEP = 1.0 are still small (from
0.08 to 0.20). This is because most pieces of adaptive rework are distributed
among smaller values regardless of DEP.

2. Difference of variability in NRD: The standard deviations of the same DEP
slightly increase as NRD increases, because the chance to have more pieces
of adaptive rework also increases. By comparing the pair of both (a, b) and
(c, d) in Fig. 4, one can see that the frequencies of (b) and (d) are larger
than those of (a) and (c) respectively, and that a few but large durations of
pieces of adaptive rework are appeared in both (b) and (d).

3. Difference of variability in DEP: Similarly, the standard deviations of the
same NRD increase as DEP increases. DEP has a stronger impact on vari-
ability compared to NRD, when we consider only for the studied simulation
settings. This is because different DEPs generate different WCAR distribu-
tions, while different NRDs share the same WCAR distribution. The shape
of a WCAR distribution is considered as a dominant factor on variability,
rather than NRD.

4. Comparison of variability: We selected two simulation settings which have
almost the same estimated total cycle time but different parameters: (A)
DEP = 0.2 and NRD = 40, and (B) DEP = 1.0 and NRD = 8. Fig. 5 (d)
shows the comparison results between them. To judge whether the means
of both settings are the same, we used Welch’s t-test at the 5% significance
level. The p-value was 0.40, so we can conclude that there is no statistically
significant difference on means between them. However, an F-test showed
quite a small p-value¿ 0.01. Then we can conclude that there is a significant
difference between their variances. This difference mostly comes from the
different WCAR distributions, as described in the item 3.

4 Model Evaluation

Because of the nature of simulation study, it is impossible to validate all as-
pects of the proposed simulation model comprehensively. However, the utility
of the model can be evaluated by using empirical data, even though it will
not demonstrate comprehensive validation. As we do not have enough empiri-
cal data at this moment, we follow four aspects of validation and verification
for simulation models [28]: conceptual model validity (between problem entity
and conceptual model), computerized model verification (between conceptual
model and computerized model), operational validity (between problem entity
and computerized model), and data validity.
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Conceptual model validity and data validity: The proposed model is consid-
ered to be reasonably valid under the assumptions described in Sect. 2.3, because
the formula (1) is partly supported by several empirical observations as stated
in Sect. 2.1 and 2.2. Data validity as input to the model is also supported by
these empirical observations in terms of determining the WCAR distribution
and WEM. However, there are some limitations of the model. We discuss this
topic in Sect. 5.2.

Computerized model verification: We have confidence that the simulation
program is accurately implemented because of our precise investigations of the
simulation results (like Fig. 3 and Fig. 4), and because of our inspections of the
individual simulation runs including extreme conditions.

Operational validity: In general, operational validity is difficult to assess when
no observable problem entity is available. In such a case, comparison to other
models and sensitivity analysis are meaningful approaches to validate a simu-
lation model [28]. One possible approach is to compare the proposed model to
other effort estimation models. However, this approach is not applicable in this
case, because both COCOMO II [9] and COPLIMO [10], a COCOMO II based
cost estimation model for SPL development, do not produce variability of esti-
mated effort. These models have a lot of parameters such as effort multipliers,
but these parameters are deterministic but not stochastic.

Another possible approach is to evaluate the generated adaptive rework by
the simulation program rather than total cycle time. By comparing the distri-
butions of the generated adaptive rework in Fig. 4 (a, b) to the change effort
distribution from the SEL data in Fig. 1 (a), both distributions can be subjec-
tively judged to be similar. However, the ranges of Fig. 4 (c, d) are smaller than
that of Fig. 1 (a), as DEP has a strong impact on durations of adaptive rework.
At least, we can conclude that the simulation model is capable of producing
reasonable adaptive rework distributions.

Sensitivity analysis is also a useful approach to demonstrate validity of the
model, which we have already discussed in Sect. 3.3. It can be considered that
the model has reasonable validity but some limitations described in Sect. 5.2.

5 Discussion and Related Works

5.1 Calibration for Practical Application

When one wants to apply the proposed model in practical situations, the pa-
rameters of the model have to be calibrated. NRD and WEM may be able to
be estimated easily by investigating one’s own organizational defect correction
data. The WCAR distribution model might be generated by measuring adaptive
rework caused by residual defects. However, DEP will be difficult to calibrate,
though it has a stronger impact on duration of adaptive rework compared to
NRD, for the studied settings.

In this paper, specific DEP metrics are not assumed. DEP might depend on
attributes such as coupling between core components and product components,
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number of dependent product components reusing a core component, and in-
heritance depth between core and product components. Those attributes and
measured values will be translated into DEP and calibrated by checking gener-
ated adaptive rework distributions like Fig. 4.

5.2 Limitations of the Model

The proposed model uses the calendar time scale for the duration of adaptive
rework instead of the effort or cost scale, because defect correction completion
time is also represented by using the calendar time scale. Therefore, a project
delay always occurs corresponding to any residual defects, even though the du-
rations of pieces of adaptive rework are very short. In practice, such small pieces
of adaptive rework may not bring delay, but instead require additional effort or
cost. This is one of the limitations of the model in terms of conceptual validity.

In addition, the project delay estimated by the proposed model can not be
translated into absolute effort or cost, as the current model does not use those
scales directly. However, when considering relative effort or cost estimation error,
the current model may be useful as it is.

Moreover, the current model does not explicitly consider resource limitation
and resource allocation policies as well. Project delay will be occurred in practice
when enough resource are not available. There are other sources of project delay
such as unplanned work arisen from requirements change and defect correction.
We are in the process of introducing these factors into the simulation model.

5.3 Effort Estimation and Simulation in SPL Development

Several studies have appeared in the literature on estimating the benefits of SPL
development [10, 29, 30]. These studies use more macro-level analytical models
compared with our model. The primary purpose of the studies [29, 30] is for
estimating the return on investment of SPL development compared with non-
SPL development. COPLIMO [10] is a deterministic cost estimation model for
SPL and does not represent uncertainty, as well as COCOMO II [9]. COCOMO-
U [12] introduces uncertainty into COCOMO II, but does not mention how the
model can be applied to SPL development.

Chen et al. proposed a discrete-event SPL process simulator using COPLIMO
as their base cost model [11]. Schmid et al. studied SPL planning strategies
through deterministic simulations [2]. These two studies have similar research
questions to ours. However, these studies do not explicitly use factors such as
NRD, DEP, and adaptive rework. They are also not capable of calculating the
level of risk of estimated effort under uncertainty, as they are based on deter-
ministic simulation models.

6 Conclusions

In this paper, we proposed a stochastic simulation model for estimating project
delay and its variability in SPL development. The model has been validated
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through simulations with fictional project data, by comparing generated adap-
tive rework to an actual change effort distribution, and by sensitivity analysis.
The result shows that the proposed model is capable of producing reasonable
variability of adaptive rework, and consequently variability of project delay, even
though some limitations exist. Analysis of our model indicates that the strength
of dependency, or DEP, has a larger impact on durations of adaptive rework than
the number of residual defects, or NRD, for the studied simulation settings. The
result shows that the level of risk of project delay can be held down if DEP and
NRD are quite small. It will still be held down even though DEP is strong, if
most pieces of adaptive rework do not require large effort. When we consider the
impact of DEP, it sometimes bring larger durations of adaptive rework. However,
the overall effect on project delay is trivial according to the simulation result.

The future work primarily involves empirical validation of the proposed
model, enhancement of the model to overpass the limitations and the model
assumptions which constrain the utility of the model, and calibration methods
of the parameters. We are in the process of enhancing the model to be capable
of estimating absolute effort overruns under specific resource allocation plan as
well as its limitation. We are also trying to contact some companies to gather
empirical SPL development data that are usable for model evaluation.
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